maNga Admin
Mesaj Sayısı : 104 Kayıt tarihi : 10/10/10 Yaş : 27 Nerden : Denizli
| Konu: Karmaşık Sayılar Paz Ekim 31, 2010 8:04 pm | |
| I. KARMAŞIK SAYILAR KÜMESİ Tanım <table id="table1" border="5" width="89%" height="97"> <tr> <td width="73%"> sayısına sanal sayı (imajiner sayı) birimi denir. ve ile gösterilir.</td></tr></table> Uyarı <table id="table2" border="5" width="89%" height="172"> <tr> <td width="73%"> a, b pozitif gerçel sayı ve x, y negatif gerçel sayı olmak üzere, </td></tr></table> A. i NİN KUVVETLERİ olmak üzere, i0 = 1 dir. i1 = i dir. i2 = –1 dir. i3 = i2 × i1 = (–1) × i = –i dir. i4 = i2 × i2 = (–1) × (–1) = 1 dir. i5 = i4 × i1 = 1 × i = i dir. Görüldüğü gibi i nin kuvvetleri ; 1, i, –1, –i değerlerinden birine eşit olmaktadır. Sonuç <table id="table3" border="5" width="89%" height="357"> <tr> <td width="73%"> Sanal sayı biriminin (i nin) kuvveti x olsun. x tam sayısı 4 ile bölündüğünde, kalan 0 ise, ix ifadesinin eşiti 1, kalan 1 ise, ix ifadesinin eşiti i, kalan 2 ise, ix ifadesinin eşiti –1, kalan 3 ise, ix ifadesinin eşiti –i dir. Buna göre, n tam sayı olmak üzere, i4n= 1, i4n+1 = i, i4n+2 = –1, i4n+3 = –i dir.</td></tr></table> Tanım <table id="table4" border="5" width="89%" height="397"> <tr> <td width="73%"> a ve b birer reel (gerçel) sayı ve olmak üzere, z = a + bi şeklinde ifade edilen z sayısına karmaşık (kompleks) sayı denir. Karmaşık sayılar kümesi ile gösterilir. Buna göre, z = a + bi karmaşık sayısında; a ya karmaşık sayının reel (gerçel) kısmı, b ye karmaşık sayının imajiner (sanal) kısmı denir. z = a + bi ise Re(z) = a İm(z) = b şeklinde gösterilir.</td></tr></table> Uyarı <table id="table5" border="5" width="89%" height="126"> <tr> <td width="73%"> Her reel (gerçel) sayı imajiner kısmı 0 (sıfır) olan bir karmaşık sayıdır. Buna göre, karmaşık sayılar kümesi reel sayılar kümesini kapsar. Yani, dir.</td></tr></table> B. İKİ KARMAŞIK SAYININ EŞİTLİĞİ Reel kısımları ve imajiner kısımları kendi aralarında eşit olan iki karmaşık sayı birbirine eşittir. Kural <table id="table6" border="5" width="89%" height="99"> <tr> <td width="73%"> </td></tr></table> C. KARMAŞIK SAYILARIN ANALİTİK DÜZLEMDE BELİRTİLMESİ Reel kısmı a, imajiner kısmı b olan karmaşık sayının; z = a + ib şeklindeki gösterimine karmaşık sayının standart (cebirsel) biçimi, Z(a, b) biçimindeki gösterimine kartezyen koordinatlarıyla gösterilmiş biçimi denir. Ox eksenine reel eksen, Oy eksenine de sanal (imajiner) eksen diyerek karmaşık sayıları gösterebileceğimiz karmaşık düzlemi elde ederiz. Karmaşık sayılarla karmaşık düzlemin noktaları bire bir eşlenebilir. z = a + bi karmaşık sayısının düzlemdeki görüntüsü (a, b) noktasıdır. D. KARMAŞIK SAYININ EŞLENİĞİ ve i2 = –1 olmak üzere, a + bi ve a + (–b)i karmaşık sayılarından birine diğerinin eşleniği denir. z karmaşık sayısının eşleniği ile gösterilir. Buna göre, Kural <table id="table7" border="5" width="89%" height="154"> <tr> <td width="73%"> Bir karmaşık sayının eşleniğinin eşleniği kendisidir. Buna göre, </td></tr></table> Kural <table id="table8" border="5" width="89%" height="99"> <tr> <td width="73%"> Reel kat sayılı, ax2 + bx + c = 0 ikinci dereceden denkleminin köklerinden biri m + ni karmaşık sayısı ise diğeri m – ni sayısıdır.</td></tr></table> E. KARMAŞIK SAYILARIN MUTLAK DEĞERİ (MODÜLÜ) Karmaşık düzlemde, bir karmaşık sayıya karşılık gelen noktanın başlangıç noktasına (orijine) olan uzaklığına bu sayının mutlak değeri veya modülü denir. z karmaşık sayısının mutlak değeri |z| ile gösterilir. <table id="table9" border="0" width="100%"> <tr> <td width="41%" height="30"> </td> <td valign="top" width="57%" height="30"> Yandaki dik üçgende Pisagor teoreminden de, dir.</td></tr></table> F. KARMAŞIK SAYILARDA İŞLEMLER 1. Toplama İşlemi Karmaşık sayılar toplanırken, reel kısımlar kendi aralarında ve sanal kısımlar kendi aralarında toplanır. Buna göre, i2 = –1 olmak üzere, karmaşık sayıları verilmiş olsun. Bu durumda, 2. Çıkarma İşlemi z + (–w) = z – w olduğuna göre, z sayısını w sayısının toplama işlemine göre tersi ile toplamak, z sayısından w sayısını çıkarmak demektir. Buna göre, z ile w nin farkı, reel kısımların birbiri ile sanal kısımların birbiri ile farkına eşittir. Reel kısımların farkı, sonucun reel kısmını; sanal kısımların farkı, sonucun sanal kısmını verir. Buna göre, i2 = –1 olmak üzere, karmaşık sayıları verilmiş olsun. Bu durumda 3. Çarpma İşlemi Karmaşık sayılarda çarpma işlemi, i2 = –1 olduğu göz önüne alınarak, reel sayılardakine benzer şekilde yapılır. z = a + bi ve w = c + di olsun. Buna göre, Sonuç <table id="table10" border="5" width="89%" height="183"> <tr> <td width="73%"> i2 = –1 ve z = a + bi olmak üzere, </td></tr></table> Kural <table id="table11" border="5" width="89%" height="99"> <tr> <td width="73%"> i2 = –1 ve n tam sayı olmak üzere, </td></tr></table> 4. Bölme İşlemi z1 × (z2)–1 sayısına z1 in z2 ye bölümü denir ve biçiminde gösterilir. Karmaşık sayılarda bölme işlemi, pay ile paydanın, paydanın eşleniği ile genişletilmesiyle yapılır. Yani, z1 = a + bi ve z2 = c + di ise, 5. Eşlenik ve Mutlak Değerle İlgili Bazı Özellikler z1 ve z2 birer karmaşık sayı olmak üzere, G. KARMAŞIK DÜZLEMDE İKİ NOKTA ARASINDAKİ UZAKLIK z = a + bi ve w = c + di olsun. |z – w| ifadesinin değeri z ile w sayısı arasındaki uzaklığa eşittir. z sayısına karşılık gelen nokta A, w sayısına karşılık gelen nokta B olsun. Buna göre, Kural <table id="table12" border="5" width="89%" height="292"> <tr> <td width="73%"> z, değişen değerler alan bir karmaşık sayı; w sabit bir karmaşık sayı ve r, pozitif reel sayı olmak koşuluyla |z – w| = r eşitliğini gerçekleyen z noktalarının kümesi, karmaşık düzlemde, merkezi w ye karşılık gelen nokta ve yarıçapı r olan bir çember belirtir. |z – w| < r eşitsizliğini gerçekleyen z noktalarının kümesi, karmaşık düzlemde, merkezi w ye karşılık gelen nokta ve yarıçapı r olan çemberin iç bölgesini belirtir.</td></tr></table> II. KARMAŞIK SAYILARIN KUTUPSAL (TRİGONOMETRİK) GÖSTERİMİ i2 = –1 olmak üzere, z = a + bi olsun. z nin karmaşık düzlemdeki görüntüsü M(a, b) noktasıdır. z karmaşık sayısını orijine birleştiren doğrunun reel eksenle (Ox ekseniyle) pozitif yönde yaptığı açıya, z karmaşık sayısının argümenti denir ve arg(z) ile gösterilir. olsun. Bu durumda, şeklinde gösterilir. Açının esas ölçüsü olan değere de esas argüment denir. Bu durumda esas argüment; negatif olmayan ve 360° den ( radyandan) küçük bir değerdir. Yukarıdaki şekilde, OHM dik üçgeninden, yazılır. Buradan, Sonuç <table id="table13" border="5" width="89%" height="211"> <tr> <td width="73%"> i2 = –1 olmak üzere, z = a + bi olsun. z nin, mutlak değeri (orijine uzaklığı) |z| = r ve esas argümenti q olmak üzere, z = |z| × (cosq + isinq) biçiminde yazılmasına, z karmaşık sayının kutupsal (trigonometrik) gösterimi denir. z = |z| × (cosq + isinq) ifadesi z = r × cisq biçiminde kısaca gösterilebilir.</td></tr></table> Tanım <table id="table14" border="5" width="89%" height="149"> <tr> <td width="73%"> i2 = –1 olmak üzere, z = a + bi olsun. Karmaşık sayının mutlak değeri ile argümentinden oluşan sıralı ikiliye bu sayının kutupsal koordinatları denir. z nin kutupsal koordinatları (|z|, q) veya (r, q) biçiminde gösterilir.</td></tr></table> Kural <table id="table15" border="5" width="89%" height="214"> <tr> <td width="73%"> olmak üzere, Buna göre, karmaşık sayıların çarpımının argümenti, bu sayıların argümentleri toplamına eşittir. Bu durumda, </td></tr></table> Kural <table id="table16" border="5" width="89%" height="264"> <tr> <td width="73%"> olmak üzere, Buna göre, iki karmaşık sayının bölümünün argümenti, bu sayıların argümentleri farkına eşittir. Bu durumda, </td></tr></table> Kural <table id="table17" border="5" width="89%" height="121"> <tr> <td width="73%"> </td></tr></table> Sonuç <table id="table18" border="5" width="89%" height="86"> <tr> <td width="73%"> </td></tr></table> Sonuç <table id="table19" border="5" width="89%" height="136"> <tr> <td width="73%"> Buna göre, bir karmaşık sayının esas argümentinin ölçüsü radyan türünden a ise, bu karmaşık sayının eşleniğinin esas argümenti 2p – a dır.</td></tr></table> Kural <table id="table20" border="5" width="89%" height="99"> <tr> <td width="73%"> z0 = a + bi karmaşık sayısının karmaşık düzlemdeki görüntüsü M(a, b) noktası olsun. arg(z – z0) = q koşulunu sağlayan z karmaşık sayılarının görüntüsü MP yarı doğrusudur. </td></tr></table> A. ORİJİN ETRAFINDA DÖNDÜRME z = r × cisq karmaşık sayısının orijin etrafında pozitif yönde a kadar döndürülmesiyle elde edilen karmaşık sayı, v = r × cis(q + a) olur. Bu durum, v = z × (cosa + isina) biçiminde de ifade edilebilir. Uyarı <table id="table21" border="5" width="89%" height="99"> <tr> <td width="73%"> Bir karmaşık sayıyı negatif yönde q derece kadar döndürmek, o sayıyı pozitif yönde 360° – q kadar döndürmektir.</td></tr></table> B. BİR KARMAŞIK SAYININ KÖKLERİ olmak üzere, zn = u denklemini sağlayan z sayısına u sayısının n inci kuvvetten kökü denir. Sonuç <table id="table22" border="5" width="89%" height="135"> <tr> <td width="73%"> z2 = w eşitliğini sağlayan z sayıları birbirinin toplama işlemine göre tersidir. Yani, z2 = w eşitliğini sağlayan z sayıları z1 ile z2 ise, z1 = –z2 dir.</td></tr></table> Kural <table id="table23" border="5" width="89%" height="274"> <tr> <td width="73%"> zn = w denkleminin kökleri aşağıdaki eşitliği sağlayan zk sayısında k yerine, 0, 1, 2, ... , (n – 1) yazılarak bulunur. </td></tr></table> | |
| |
|