Dersimiz Forum
Would you like to react to this message? Create an account in a few clicks or log in to continue.

Dersimiz Forum
 
AnasayfaLatest imagesAramaKayıt OlGiriş yap

 

 Çarpanlara Ayırma

Aşağa gitmek 
YazarMesaj
maNga
Admin
maNga


Mesaj Sayısı : 104
Kayıt tarihi : 10/10/10
Yaş : 27
Nerden : Denizli

Çarpanlara Ayırma  Empty
MesajKonu: Çarpanlara Ayırma    Çarpanlara Ayırma  EmptyPaz Ekim 31, 2010 8:01 pm

A. ORTAK ÇARPAN PARANTEZİNE ALMA
Çarpanlara Ayırma  11_Car2

En az dört terimi olan ifadeler ortak çarpan parantezine alınacak biçimde gruplandırılır, sonra ortak çarpan parantezine alınır.



B. ÖZDEŞLİKLER
1. İki Kare Farkı - Toplamı
1) a2 – b2 = (a – b)(a + b)
2) a2 + b2 = (a + b)2 – 2ab
3) a2 + b2 = (a – b)2 + 2ab

2. İki Küp Farkı - Toplamı
1) a3 – b3 = (a – b)(a2 + ab + b2 )
2) a3 + b3 = (a + b)(a2 – ab + b2 )
3) a3 – b3 = (a – b)3 + 3ab(a – b)
4) a3 + b3 = (a + b)3 – 3ab(a + b)

3. n. Dereceden Farkı - Toplamı
1) n bir sayma sayısı olmak üzere,
xn – yn = (x – y)(xn – 1 + xn – 2y + xn – 3 y2 + ... + xyn – 2 + yn – 1) dir.

2) n bir tek sayma sayısı olmak üzere,
xn + yn = (x + y)(xn – 1 – xn – 2y + xn – 3 y2 – ... – xyn – 2 + yn – 1) dir.

4. Tam Kare İfadeler
1) (a + b)2 = a2 + 2ab + b2
2) (a – b)2 = a2 – 2ab + b2
3) (a + b + c)2 = a2 + b2 + c2 + 2(ab + ac + bc)
4) (a + b – c)2 = a2 + b2 + c2 + 2(ab – ac – bc)

n bir tam sayı ve a ¹ b olmak üzere,
• (a – b)2n = (b – a)2n
• (a – b)2n – 1 = –(b – a)2n – 1 dir.


• (a + b)2 = (a – b)2 + 4ab



5. (a ± b)n nin Açılımı
Pascal Üçgeni
Çarpanlara Ayırma  11_Car3
(a + b)n açılımı yapılırken, önce a nın n . kuvvetten başlayarak azalan, b nin 0 dan başlayarak artan kuvvetlerinin çarpımları yazılıp toplanır.
Sonra n nin Paskal üçgenindeki karşılığı bulunarak kat sayılar belirlenir.
(a – b)n yukarıdaki biçimde yapılır ancak b nin; çift kuvvetlerinde terimin önüne (+), tek kuvvetlerinde terimin önüne (–) işareti konulur.

• (a + b)3 = a3 + 3a2b + 3ab2 + b3
• (a – b)3 = a3 – 3a2b + 3ab2 – b3
• (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 +b4
• (a – b)4 = a4 – 4a3b + 6a2b2 – 4ab3 + b4


• a4 + a2 + 1 = (a2 + a + 1)(a2 – a + 1)
• a4 + 4 = (a2 + 2a + 2)(a2 – 2a + 2)
• a4 + 4b4 = (a2 + 2ab + 2b2)(a2 – 2ab + 2b2)


a3 + b3 + c3 – 3abc =
(a + b + c)(a2 + b2 + c2 – ab – ac – bc)


C. ax2 + bx + c BİÇİMİNDEKİ ÜÇ TERİMLİNİN ÇARPANLARA AYRILMASI
ax2 + bx + c ifadesini çarpanlarına ayırırken birkaç yöntem kullanılır. Biz burada ikisini vereceğiz. En iyi öğrendiğiniz yöntemi daima kullanarak pratiklik sağlayınız.

1. YÖNTEM
1. a = 1 için,
b = m + n ve c = m × n olmak üzere,
Çarpanlara Ayırma  11_Car4
2. a ¹ 1 İken
m × n = a, mp + qn = b ve c = q × p ise
Çarpanlara Ayırma  11_Car5
ax2 + bx + c = (mx + q) × (nx + p) dir.

2. YÖNTEM
Çarpımı a × c yi,
toplamı b yi veren iki sayı bulunur.
Bulunan sayılar p ve r olsun.
Bu durumda,
Çarpanlara Ayırma  11_Car6
Çarpanlara Ayırma  11_Car7 daki ifade gruplandırılarak çarpanlarına ayrılır.
Sayfa başına dön Aşağa gitmek
https://dersimizforum.yetkin-forum.com
 
Çarpanlara Ayırma
Sayfa başına dön 
1 sayfadaki 1 sayfası

Bu forumun müsaadesi var:Bu forumdaki mesajlara cevap veremezsiniz
Dersimiz Forum :: Lise :: Lise 1-
Buraya geçin: